Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods ; 205: 73-82, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35764247

RESUMO

Post-transcriptional modifications play an important role in several processes, including translation, splicing, and RNA degradation in eukaryotic cells. To investigate the function of specific modifications it is of high interest to develop tools for sequence-specific RNA-targeting. This work focuses on two abundant modifications of eukaryotic mRNA, namely methylation of the guanine-N7 position of the 5'-cap and internal N6-methyladenosine (m6A). We describe the sequence-specific targeting of model RNA transcripts via RNA-binding proteins, such as nuclease-deficient RNA-targeting Cas9 (RCas9) and the Pumilio homology domain (PumHD) fused to two different effector enzymes, the dioxygenase FTO and the guanine-N7 methyltransferase Ecm1. With this tool, we were able to install and remove the methylation at the respective positions with high specificity.


Assuntos
Adenosina , RNA , Adenosina/metabolismo , Guanina , Metilação , Metiltransferases/química , RNA/genética , RNA/metabolismo
2.
Methods ; 203: 196-206, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34058305

RESUMO

Enzymatic modification of the 5'-cap is a versatile approach to modulate the properties of mRNAs. Transfer of methyl groups from S-adenosyl-l-methionine (AdoMet) or functional moieties from non-natural analogs by methyltransferases (MTases) allows for site-specific modifications at the cap. These modifications have been used to tune translation or control it in a temporal manner and even influence immunogenicity of mRNA. For quantification of the MTase-mediated cap modification, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) provides the required sensitivity and accuracy. Here, we describe the complete workflow starting from in vitro transcription to produce mRNAs, via their enzymatic modification at the cap with natural or non-natural moieties to the quantification of these cap-modifications by LC-QqQ-MS.


Assuntos
Metiltransferases , Espectrometria de Massas em Tandem , Cromatografia Líquida , Metionina/química , Metiltransferases/química , Metiltransferases/genética , RNA Mensageiro/química , RNA Mensageiro/genética
3.
RSC Chem Biol ; 2(5): 1484-1490, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34704053

RESUMO

The spatial and temporal control of gene expression at the post-transcriptional level is essential in eukaryotic cells and developing multicellular organisms. In recent years optochemical and optogenetic tools have enabled the manipulation and investigation of many steps in the involved processes. However, examples for light-mediated control of eukaryotic mRNA processing and the responsible enzymes are still rare. In particular, methylation of the 5' cap of mRNA is required for ribosome assembly, and the responsible guanine-N7 methyltransferase (MTase) from E. cuniculi (Ecm1) proved suitable for activating translation. Here, we report on a photoswitchable MTase obtained by bridging the substrate-binding cleft of Ecm1 with a tetra-ortho-methoxy-azobenzene. This azobenzene derivative is characterized by efficient trans-to-cis isomerization using red light at 615 nm. Starting from a cysteine-free Ecm1 variant (ΔCys), we used a computational approach to identify suitable conjugation sites for the azobenzene moiety. We created and characterized the four best-ranked variants, each featuring two appropriately positioned cysteines close to the substrate-binding cleft. Conjugating and crosslinking the azobenzene between C149/C155 in a designed Ecm1 variant (VAR3-Az) enabled light-dependent modulation of the MTase activity and showed a 50% higher activity for the cis form than the trans-form of the azobenzene conjugated to VAR3-Az.

4.
Chem Sci ; 12(12): 4383-4388, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-34163701

RESUMO

Gene expression is tightly regulated in all domains of life, with post-transcriptional regulation being more pronounced in higher eukaryotes. Optochemical and optogenetic approaches enable the actuation of many underlying processes by light, which is an excellent tool to exert spatio-temporal control. However, light-mediated control of eukaryotic mRNA processing and the respective enzymes has not been reported. We used genetic code expansion to install a photo-caged tyrosine (Y) in the active site of the cap methyltransferase Ecm1. This enzyme is responsible for guanine N7 methylation of the 5' cap, which is required for translation. Substituting Y284 with the photocaged ortho-nitrobenzyl-tyrosine (ONBY) almost completely abrogated the methylation activity of Ecm1. Irradiation with light removed the ONB group, restoring the native tyrosine and Ecm1 activity, yielding up to 97% conversion of the minimal substrate GpppA within 60 min after activation. Using luciferase- and eGFP-mRNAs as reporters, we could show that light actuates translation by inducing activation of Ecm1 ONBY284 in a eukaryotic in vitro translation system.

5.
Chembiochem ; 21(1-2): 265-271, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31626389

RESUMO

Eukaryotic mRNAs possess 5' caps that are determinants for their function. A structural characteristic of 5' caps is methylation, with this feature already present in early eukaryotes such as Trypanosoma. While the common cap-0 (m7 GpppN) shows a rather simple methylation pattern, the Trypanosoma cap-4 displays seven distinguished additional methylations within the first four nucleotides. The study of essential biological functions mediated by these unique structural features of the cap-4 and thereby of the metabolism of an important class of human pathogenic parasites is hindered by the lack of reliable preparation methods. Herein we describe the synthesis of custom-made nucleoside phosphoramidite building blocks for m62 Am and m3 Um, their incorporation into short RNAs, the efficient construction of the 5'-to-5' triphosphate bridge to guanosine by using a solid-phase approach, the selective enzymatic methylation at position N7 of the inverted guanosine, and enzymatic ligation to generate trypanosomatid mRNAs of up to 40 nucleotides in length. This study introduces a reliable synthetic strategy to the much-needed cap-4 RNA probes for integrated structural biology studies, using a combination of chemical and enzymatic steps.


Assuntos
Metiltransferases/metabolismo , Capuzes de RNA/biossíntese , Trypanosoma/metabolismo , Metilação , Estrutura Molecular , Capuzes de RNA/química , Trypanosoma/química
6.
Angew Chem Int Ed Engl ; 55(47): 14823-14827, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27754591

RESUMO

The combination of enzymes with traditional chemical catalysts unifies the high selectivity of the former with the versatility of the latter. A major challenge of this approach is the difference in the optimal reaction conditions for each catalyst type. In this work, we combined a cofactor-free decarboxylase with a ruthenium metathesis catalyst to produce high-value antioxidants from bio-based precursors. As suitable ruthenium catalysts did not show satisfactory activity under aqueous conditions, the reaction required the use of an organic solvent, which in turn significantly reduced enzyme activity. Upon encapsulation of the decarboxylase in a cryogel, the decarboxylation could be conducted in an organic solvent, and the recovery of the enzyme after the reaction was facilitated. After an intermediate drying step, the subsequent metathesis in pure organic solvent proved to be straightforward. The synthetic utility of the cascade was demonstrated by the synthesis of the antioxidant 4,4'-dihydroxystilbene in an overall yield of 90 %.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...